Nemo  2.3.56
Simulate forward-in-time genetic evolution in a spatially explicit, individual-based stochastic simulator
Uniform.h
Go to the documentation of this file.
1
28#ifndef __UNIFORM_H
29#define __UNIFORM_H
30#include <cmath>
31#include <limits.h>
32#include <assert.h>
33#include <valarray>
34#include "output.h"
35#include <iostream>
36#include "MPImanager.h"
37
38#ifdef HAS_SPRNG
39// #define SIMPLE_SPRNG
40 #include <sprng_cpp.h>
41#endif
42
43#ifdef HAS_GSL
44 #include <gsl/gsl_rng.h>
45 #include <gsl/gsl_randist.h>
46 #include <gsl/gsl_blas.h>
47 #include <gsl/gsl_math.h>
48 #include <gsl/gsl_vector.h>
49 #include <gsl/gsl_matrix.h>
50 #include <gsl/gsl_permutation.h>
51#endif
52
53extern MPIenv *_myenv;
54
56class RAND {
57private:
58
60
61public:
62
63#if defined(HAS_SPRNG)
64
65 static Sprng *stream;
66
67#elif defined(HAS_GSL)
68
69 static gsl_rng * r;
70
71 static void init_gsl(const gsl_rng_type* T, unsigned long seed)
72 {
73 r = gsl_rng_alloc (T);
74 gsl_rng_set(r,seed);
75 }
76
77#else
78
79 static long Seed1,Seed2;
80
81#endif
83 static void init (unsigned long seed) {
84
85#if defined(HAS_SPRNG)
86 // initializing the SPRNG stream with default param and LFG (0) generator
87
88 stream = SelectType(4); //MLFG Modified Lagged Fibonacci
89
90 stream->init_sprng( _myenv->workerRank(), _myenv->workerCount()+1, seed, SPRNG_DEFAULT );
91
92// message("--- initialized the SPRNG random generator on rank %i\n", _myenv->workerRank());
93//
94// stream->print_sprng();
95//
96// message("--- process %i random number: %.14f\n", _myenv->workerRank(), stream->sprng());
97
98#elif defined(HAS_GSL)
99
100 init_gsl( gsl_rng_mt19937, seed );
101
102#else
103
104 Seed1 = seed;
105
106#endif
107 }
109 static void free()
110 {
111
112#if defined(HAS_SPRNG)
113 // do nothing with pointer?
114#elif defined(HAS_GSL)
115 gsl_rng_free(r);
116#endif
117
118 }
119
125 static inline double Uniform () {
126
127#ifdef HAS_SPRNG
128 return stream->sprng();
129#elif defined(HAS_GSL)
130 return gsl_rng_uniform(r);
131#else
132 register long z, w;
133
134 do{
135 w = Seed1 / 53668;
136
137 Seed1 = 40014 * (Seed1 - w * 53668) - w * 12211;
138
139 if (Seed1 < 0) Seed1 += 2147483563;
140
141 w = (Seed2 / 52774);
142
143 Seed2 = 40692 * (Seed2 - w * 52774) - w * 3791;
144
145 if (Seed2 < 0) Seed2 += 2147483399;
146
147 z = Seed1 - Seed2;
148
149 if (z < 1) z += 2147483562;
150
151 }while (!((z * 4.656613e-10) < 1.0));
152
153 return (z * 4.656613e-10);
154#endif
155 }
157 static inline unsigned int Uniform (unsigned int max)
158 {
159 return (unsigned int)(Uniform() * max);
160 }
161
163 static inline bool RandBool() {
164 //generate a random int (or long)
165#ifdef HAS_SPRNG
166 static int intrand = stream->isprng();
167#elif defined(HAS_GSL)
168 static unsigned long int intrand = gsl_rng_get(r);
169#else
170 static int intrand = (int)(Uniform()*(double)std::numeric_limits<int>::max());
171#endif
172 //read up to the first 16 bits
173 static unsigned int num = 0;
174 //redraw an number after that limit
175 if ( ++num > 16 ) {
176 num = 0;
177
178#ifdef HAS_SPRNG
179 intrand = stream->isprng();
180#elif defined(HAS_GSL)
181 intrand = gsl_rng_get(r);
182#else
183 intrand = (int)(Uniform()*(double)std::numeric_limits<int>::max());
184#endif
185
186 }
187 return (intrand & (1 << num) );
188
189 }
190
192 static inline unsigned long RandULong() {
193#if defined(HAS_GSL) && !defined(HAS_SPRNG)
194 return gsl_rng_get(r);
195#else
196 unsigned long rnd, limit = 0x10000000; //=2^28 this gives ~7% redraws
197 do{
198 rnd = (unsigned long)(Uniform()*ULONG_MAX);
199 }while(rnd < limit);
200
201 return rnd;
202#endif
203 }
205 static inline double gammln (double xx) {
206 double x,y,tmp,ser=1.000000000190015;
207 static double cof[6]={76.18009172947146,-86.50532032941677,
208 24.01409824083091,-1.231739572450155,
209 0.1208650973866179e-2,-0.5395239384953e-5};
210 int j;
211 y=x=xx;
212 tmp=x+5.5;
213 tmp -= (x+0.5)*log(tmp);
214 for (j = 0; j < 6; ++j) ser += cof[j]/++y;
215
216 return -tmp+log(2.5066282746310005*ser/x);
217
218 }
220 static inline double Poisson (double mean) {
221
222#if defined(HAS_GSL) && !defined(HAS_SPRNG)
223 return gsl_ran_poisson(r, mean);
224#else
225 static double sq,alxm,g,oldm=(-1.0);
226 double em,t,y;
227
228 if (mean < 12.0)
229 {
230 if (mean != oldm){
231 oldm=mean;
232 g=exp(-mean);
233 }
234 em = -1;
235 t=1.0;
236 do {
237 ++em;
238 t *= Uniform();
239 } while (t > g);
240 }else
241 {
242 if (mean != oldm)
243 {
244 oldm=mean;
245 sq=sqrt(2.0*mean);
246 alxm=log(mean);
247 g=mean*alxm-gammln(mean+1.0);
248 }
249 do {
250 do {
251 y=tan(M_PI*Uniform());
252 em=sq*y+mean;
253 } while (em < 0.0);
254 em=floor(em);
255 t=0.9*(1.0+y*y)*exp(em*alxm-gammln(em+1.0)-g);
256 } while (Uniform() > t);
257 }
258 return em;
259#endif
260 }
261
262 static inline double Gaussian(double sigma)
263 {
264#if defined(HAS_GSL) && !defined(HAS_SPRNG)
265
266 return gsl_ran_gaussian_ratio_method (r, sigma);
267
268#else
270// double x, y, r2;
271//
272// do
273// {
274// /* choose x,y in uniform square (-1,-1) to (+1,+1) */
275//
276// x = -1 + 2 * Uniform ( );
277// y = -1 + 2 * Uniform ( );
278//
279// /* see if it is in the unit circle */
280// r2 = x * x + y * y;
281// }
282// while (r2 > 1.0 || r2 == 0);
283//
284// /* Box-Muller transform */
285// return sigma * y * sqrt (-2.0 * log (r2) / r2);
286
287 /*trying the ratio method from GSL*/
288 /* see code in gsl/randist/gauss.c */
289 double u, v, x, y, Q;
290 const double s = 0.449871; /* Constants from Leva */
291 const double t = -0.386595;
292 const double a = 0.19600;
293 const double b = 0.25472;
294 const double r1 = 0.27597;
295 const double r2 = 0.27846;
296
297 do /* This loop is executed 1.369 times on average */
298 {
299 /* Generate a point P = (u, v) uniform in a rectangle enclosing
300 the K+M region v^2 <= - 4 u^2 log(u). */
301
302 /* u in (0, 1] to avoid singularity at u = 0 */
303 u = 1 - RAND::Uniform();
304
305 /* v is in the asymmetric interval [-0.5, 0.5). However v = -0.5
306 is rejected in the last part of the while clause. The
307 resulting normal deviate is strictly symmetric about 0
308 (provided that v is symmetric once v = -0.5 is excluded). */
309 v = RAND::Uniform() - 0.5;
310
311 /* Constant 1.7156 > sqrt(8/e) (for accuracy); but not by too
312 much (for efficiency). */
313 v *= 1.7156;
314
315 /* Compute Leva's quadratic form Q */
316 x = u - s;
317 y = fabs (v) - t;
318 Q = x * x + y * (a * y - b * x);
319
320 /* Accept P if Q < r1 (Leva) */
321 /* Reject P if Q > r2 (Leva) */
322 /* Accept if v^2 <= -4 u^2 log(u) (K+M) */
323 /* This final test is executed 0.012 times on average. */
324 }
325 while (Q >= r1 && (Q > r2 || v * v > -4 * u * u * log (u)));
326
327 return sigma * (v / u);
328#endif
329 }
330
331 static inline void BivariateGaussian(double sigma1,double sigma2, double rho, double *out1,double *out2) {
332#if defined(HAS_GSL) && !defined(HAS_SPRNG)
333 gsl_ran_bivariate_gaussian(r,sigma1,sigma2,rho,out1,out2);
334#else
335 //gsl code:
336 double u, v, r2, scale;
337 //double *x = out, *y = (++out);
338 do
339 {
340 /* choose x,y in uniform square (-1,-1) to (+1,+1) */
341
342 u = -1 + 2 * Uniform ();
343 v = -1 + 2 * Uniform ();
344
345 /* see if it is in the unit circle */
346 r2 = u * u + v * v;
347 }
348 while (r2 > 1.0 || r2 == 0);
349
350 scale = sqrt (-2.0 * log (r2) / r2);
351
352 *out1 = sigma1 * u * scale;
353 *out2 = sigma2 * (rho * u + sqrt(1 - rho*rho) * v) * scale;
354
355#endif
356 }
357
358 static inline double LogNormal (double zeta, double sigma) {
359#if defined(HAS_GSL) && !defined(HAS_SPRNG)
360 return gsl_ran_lognormal(r,zeta,sigma);
361#else
362 //this is the GSL code:
363 double u, v, r2, normal, z;
364
365 do
366 {
367 /* choose x,y in uniform square (-1,-1) to (+1,+1) */
368
369 u = -1 + 2 * Uniform();
370 v = -1 + 2 * Uniform();
371
372 /* see if it is in the unit circle */
373 r2 = u * u + v * v;
374 }
375 while (r2 > 1.0 || r2 == 0);
376
377 normal = u * sqrt (-2.0 * log (r2) / r2);
378
379 z = exp (sigma * normal + zeta);
380
381 return z;
382
383#endif
384 }
385
386 static inline double Gamma (double a, double b) {
387#if defined(HAS_GSL) && !defined(HAS_SPRNG)
388 return gsl_ran_gamma(r, a, b);
389#else
390 /*pasting GSL code in here*/
391
392 /* assume a > 0 */
393
394 if (a < 1)
395 {
396 double u = Uniform();//might give singularity at 0....
397 return Gamma(1.0 + a, b) * pow (u, 1.0 / a);
398 }
399
400 {
401 double x, v, u;
402 double d = a - 1.0 / 3.0;
403 double c = (1.0 / 3.0) / sqrt (d);
404
405 while (1)
406 {
407 do
408 {
409 x = Gaussian(1.0); //should use the Ziggurat method?
410 v = 1.0 + c * x;
411 }
412 while (v <= 0);
413
414 v = v * v * v;
415 u = Uniform();//might give singularity at 0....
416
417 if (u < 1 - 0.0331 * x * x * x * x)
418 break;
419
420 if (log (u) < 0.5 * x * x + d * (1 - v + log (v)))
421 break;
422 }
423
424 return b * d * v;
425 }
426
427#endif
428 }
429
430 static inline double Bernoulli (double p)
431 {
432#if defined(HAS_GSL) && !defined(HAS_SPRNG)
433 return gsl_ran_bernoulli(r, p);
434#else
435 double u = RAND::Uniform() ;
436
437 if (u < p)
438 {
439 return 1 ;
440 }
441 else
442 {
443 return 0 ;
444 }
445#endif
446 }
447
448 static inline double Exponential (double mu) {
449 return -mu * log(RAND::Uniform());
450 }
451
452#ifdef HAS_GSL
453 static inline void MultivariateGaussian(gsl_vector *eval, gsl_matrix *evec,
454 gsl_vector *workspace, gsl_vector *px)
455 {
456 size_t i;
457
458 for (i=0; i<eval->size; i++)
459 gsl_vector_set (workspace, i,
460 Gaussian(gsl_vector_get (eval, i)));
461
462 gsl_blas_dgemv (CblasNoTrans, 1.0,
463 evec, workspace, 0.0, px); /* px = evec * px */
464
465 }
466
467 static inline void MultivariateGaussianCholesky(gsl_vector *sigma, gsl_matrix *M, gsl_vector *px)
468 {//generate n i.i.d. random normal variates
469 for (size_t i = 0; i < sigma->size; i++)
470 gsl_vector_set (px, i, Gaussian(gsl_vector_get(sigma, i)));
471
472 gsl_blas_dtrmv (CblasLower, CblasNoTrans, CblasNonUnit, M, px);
473 }
474
475 static inline long double factoriel(unsigned int x) {
476 long double f = 1;
477 for(unsigned int i=1;i<=x;++i)
478 f *= i;
479 return f;
480 }
481
482// static inline double Binomial (double p,unsigned int k,long double N,
483// const unsigned int n) {
484// register long double bincoeff = N/(factoriel(k)*factoriel(n - k));
485// return (bincoeff*pow(p,(int)k)*pow(1-p,(int)(n - k)));
486// }
487
488#endif
489
490 static inline double Binomial(double p, unsigned int n)
491 {
492 /*implements Knuth method*/
493 unsigned int i, a, b, k = 0;
494
495 while (n > 10) /* This parameter is tunable */
496 {
497 double X;
498 a = 1 + (n / 2);
499 b = 1 + n - a;
500
501 X = RAND::Beta((double) a, (double) b);
502
503 if (X >= p)
504 {
505 n = a - 1;
506 p /= X;
507 }
508 else
509 {
510 k += a;
511 n = b - 1;
512 p = (p - X) / (1 - X);
513 }
514 }
515
516 for (i = 0; i < n; i++)
517 {
518 double u = RAND::Uniform();
519 if (u < p)
520 k++;
521 }
522
523 return k;
524
525 }
526
527 static inline double Beta (const double a, const double b)
528 {
529 /*from Knuth*/
530 double x1 = RAND::Gamma(a, 1.0);
531 double x2 = RAND::Gamma(b, 1.0);
532
533 return x1 / (x1 + x2);
534 }
535
536 static inline unsigned int Binomial2 (double p, unsigned int n){
537
538#if defined(HAS_GSL) && !defined(HAS_SPRNG)
539 return gsl_ran_binomial (r, p, n);
540#else
541 return Binomial(p, n);
542#endif
543 }
544
545 static inline void Multinomial (size_t K, unsigned int N, const double p[], unsigned int n[])
546 {
547#if defined(HAS_GSL) && !defined(HAS_SPRNG)
548 return gsl_ran_multinomial (r, K, N, p, n);
549#else
550 // GSL code here:
551 size_t k;
552 double norm = 0.0;
553 double sum_p = 0.0;
554
555 unsigned int sum_n = 0;
556
557 /* p[k] may contain non-negative weights that do not sum to 1.0.
558 * Even a probability distribution will not exactly sum to 1.0
559 * due to rounding errors.
560 */
561
562 for (k = 0; k < K; k++)
563 {
564 norm += p[k];
565 }
566
567 for (k = 0; k < K; k++)
568 {
569 if (p[k] > 0.0)
570 {
571 n[k] = Binomial (p[k] / (norm - sum_p), N - sum_n); //MOD
572 }
573 else
574 {
575 n[k] = 0;
576 }
577
578 sum_p += p[k];
579 sum_n += n[k];
580 }
581
582#endif
583 }
585 static inline void MultinomialOnNormalizedValarray (size_t K, unsigned int N, const std::valarray< double > &p,
586 unsigned int n[])
587 {
588 // GSL code here: FG 2020: modified for normalized arrays
589 size_t k;
590 double sum_p = 0.0;
591
592 unsigned int sum_n = 0;
593
594 for (k = 0; k < K; k++)
595 {
596 n[k] = RAND::Binomial (p[k] / (1.0 - sum_p), N - sum_n); //MOD FG
597 sum_p += p[k];
598 sum_n += n[k];
599 }
600 }
601
603 static inline void MultinomialOnNormalizedValarray_expandedOut (size_t K, unsigned int N,
604 const std::valarray<double> &p,
605 unsigned int n[])
606 {
607 // GSL code here: FG 2020: modified for normalized arrays
608 size_t k;
609 double sum_p = 0.0;
610 unsigned int _n, sum_n = 0;
611 unsigned int i = 0, pos = 0;
612
613 for (k = 0; k < K; k++) {
614 //draw number of events k with probability p[k]
615 _n = RAND::Binomial (p[k] / (1.0 - sum_p), N - sum_n);
616
617 for(i = 0; i < _n; i++)
618 n[pos++] = k;
619
620 sum_p += p[k];
621 sum_n += _n;
622 assert(pos <= N);
623 }
624 assert(sum_n == N);
625 }
626
628 static inline void MultinomialOnNormalizedValarray_scrambleOut (size_t K, unsigned int N,
629 const std::valarray<double> &p,
630 unsigned int n[])
631 {
632 // GSL code here: FG 2020: modified for normalized arrays
633 size_t k;
634 double sum_p = 0.0;
635 unsigned int _n, sum_n = 0;
636 unsigned int i = 0, pos = 0;
637
638 for (k = 0; k < K; k++) {
639 //draw number of events k with probability p[k]
640 _n = RAND::Binomial (p[k] / (1.0 - sum_p), N - sum_n);
641
642 for(i = 0; i < _n; i++)
643 n[pos++] = k;
644
645 sum_p += p[k];
646 sum_n += _n;
647 assert(pos <= N);
648 }
649 assert(sum_n == N);
650
651 //scramble the output array
653
654 }
655
657 static inline void MultinomialOnNormalizedValarrayZipper_scrambleOut (size_t K, unsigned int N,
658 const std::valarray<double> &p,
659 unsigned int n[])
660 {
661 size_t k;
662 double sum = 0.0;
663 double rand;
664 unsigned int i = 0;
665
666 for (k = 0; k < N; k++) {
667
668 rand = std::min(0.99999995, RAND::Uniform()); // to avoid problems with rounding errors
669 i = 0;
670 sum = p[i];
671
672 //zip through the proba array:
673 while( sum < rand ) {
674 i++;
675 sum += p[i];
676 }
677
678 n[k] = i;
679
680 }
681 //scramble the output array
683
684 }
685
690 static inline void ScrambleArrayUInt (const int length, unsigned int *array)
691 {
692 unsigned int size = length, pos, last = length - 1, num = length -1, el;
693
694 // with stop after 2 elements are left
695 // this algo allows swapping an element with itself, which is fine
696 for (unsigned int i = 0; i < num; i++) {
697 pos = RAND::Uniform(size);
698 el = array[last];
699 array[last] = array[pos];
700 array[pos] = el;
701 size--; last--;
702 }
703
704 assert(size == 1); //we stopped before swapping the last (first) element with itself
705 }
706
714 static inline void Sample (const int from, const int to, const unsigned int num, int* result, bool replace)
715 {
716 assert(from < to);
717
718 unsigned int seq_length = to - from; //don't include last (to)
719
720 assert(num <= seq_length);
721
722 // we build a sequence of indexes to choose from
723 int *seq = new int [seq_length];
724
725 seq[0] = from;
726
727 for(unsigned int i = 1; seq[i-1] < to && i < seq_length; ++i)
728 seq[i] = seq[i-1] + 1;
729
730 if(!replace) { //without replacement
731
732 unsigned int size = seq_length, pos, last = seq_length - 1;
733
734 for (unsigned int i = 0; i < num; i++) {
735 pos = RAND::Uniform(size);
736 result[i] = seq[pos];
737 seq[pos] = seq[last];
738 // seq[last] = result[i]; useless operation
739 size--; last--;
740 }
741
742 } else { //with replacement
743 for (unsigned int i = 0; i < num; i++)
744 result[i] = seq[ RAND::Uniform(seq_length) ];
745 }
746
747 delete [] seq;
748 }
749
750 static inline void SampleSeq(int from, int to, int by, unsigned int num, int* result, bool replace = false)
751 {
752 assert(from < to && by < to && by > 0);
753
754 unsigned int seq_length = (int)((to - from) / by); //don't include last (to)
755
756 assert(num <= seq_length);
757
758 int *seq = new int [seq_length];
759
760 seq[0] = from;
761
762 for(unsigned int i = 1; seq[i-1] + by < to && i < seq_length; ++i) seq[i] = seq[i-1] + by;
763
764 if(!replace) { //without replacement
765
766 unsigned int size = seq_length, pos, last = seq_length - 1;
767
768 for (unsigned int i = 0; i < num; i++) {
769 pos = RAND::Uniform(size);
770 result[i] = seq[pos];
771 seq[pos] = seq[last];
772 // seq[last] = result[i]; useless operation
773 size--; last--;
774 }
775
776 } else { //with replacement
777 for (unsigned int i = 0; i < num; i++) result[i] = seq[ RAND::Uniform(seq_length) ];
778 }
779
780 delete [] seq;
781 }
782
783 static inline void SampleSeqWithReciprocal(int from, int to, int by, unsigned int num1, int* result1, unsigned int num2, int* result2)
784 {
785 assert(from < to && by < to && by > 0);
786
787 unsigned int seq_length = (int)((to - from) / by); //don't include last (to)
788
789 assert(num1 + num2 == seq_length);
790
791 int *seq = new int [seq_length];
792
793 seq[0] = from;
794
795 for(unsigned int i = 1; seq[i-1] + by < to && i < seq_length; ++i) seq[i] = seq[i-1] + by;
796
797 unsigned int size = seq_length, pos, last = seq_length - 1;
798
799 for (unsigned int i = 0; i < num1; i++) {
800 pos = RAND::Uniform(size);
801 result1[i] = seq[pos];
802 seq[pos] = seq[last];
803 seq[last] = result1[i];
804 size--; last--;
805 }
806
807 for (unsigned int i = 0; i < num2 && i < size; i++)
808 result2[i] = seq[i];
809
810 delete [] seq;
811 }
812
813};
814
815#endif
MPIenv * _myenv
Definition: MPImanager.cc:36
MPI environment setup.
Definition: MPImanager.h:121
unsigned int workerCount() const
Definition: MPImanager.h:128
unsigned int workerRank() const
Definition: MPImanager.h:129
Random number generation class, uses various types of random generators depending on the implementati...
Definition: Uniform.h:56
static double Exponential(double mu)
Definition: Uniform.h:448
static double Bernoulli(double p)
Definition: Uniform.h:430
static void SampleSeqWithReciprocal(int from, int to, int by, unsigned int num1, int *result1, unsigned int num2, int *result2)
Definition: Uniform.h:783
static double gammln(double xx)
From the Numerical Recieps.
Definition: Uniform.h:205
static void MultinomialOnNormalizedValarray(size_t K, unsigned int N, const std::valarray< double > &p, unsigned int n[])
Multinomial draw assuming the probabilities sum to 1.0 and are all > 0.
Definition: Uniform.h:585
static void Multinomial(size_t K, unsigned int N, const double p[], unsigned int n[])
Definition: Uniform.h:545
static void BivariateGaussian(double sigma1, double sigma2, double rho, double *out1, double *out2)
Definition: Uniform.h:331
static void MultinomialOnNormalizedValarrayZipper_scrambleOut(size_t K, unsigned int N, const std::valarray< double > &p, unsigned int n[])
Multinomial draw assuming the probabilities sum to 1.0 and are all > 0, the output is an array of siz...
Definition: Uniform.h:657
static void MultinomialOnNormalizedValarray_expandedOut(size_t K, unsigned int N, const std::valarray< double > &p, unsigned int n[])
Multinomial draw assuming the probabilities sum to 1.0 and are all > 0, the output is an array of siz...
Definition: Uniform.h:603
static double Binomial(double p, unsigned int n)
Definition: Uniform.h:490
static void free()
Memory de-allocation.
Definition: Uniform.h:109
static long Seed1
Definition: Uniform.h:79
static void ScrambleArrayUInt(const int length, unsigned int *array)
Randomize the elements within an array.
Definition: Uniform.h:690
static double Poisson(double mean)
From the Numerical Recieps.
Definition: Uniform.h:220
static unsigned int Binomial2(double p, unsigned int n)
Definition: Uniform.h:536
static unsigned long RandULong()
Return a random unsigned long, from uniform distribution.
Definition: Uniform.h:192
static void MultinomialOnNormalizedValarray_scrambleOut(size_t K, unsigned int N, const std::valarray< double > &p, unsigned int n[])
Multinomial draw assuming the probabilities sum to 1.0 and are all > 0, the output is an array of siz...
Definition: Uniform.h:628
static unsigned int Uniform(unsigned int max)
Returns a uniformly distributed random number from [0.0, max[.
Definition: Uniform.h:157
static void init(unsigned long seed)
Initialize the random generator's seed.
Definition: Uniform.h:83
static long Seed2
Definition: Uniform.h:79
static void Sample(const int from, const int to, const unsigned int num, int *result, bool replace)
Creates a sample of integers within range [from, to), with or without replacement.
Definition: Uniform.h:714
static double Beta(const double a, const double b)
Definition: Uniform.h:527
static double Gaussian(double sigma)
Definition: Uniform.h:262
static double Uniform()
Generates a random number from [0.0, 1.0[ uniformly distributed.
Definition: Uniform.h:125
static void SampleSeq(int from, int to, int by, unsigned int num, int *result, bool replace=false)
Definition: Uniform.h:750
static bool RandBool()
Returns a random boolean.
Definition: Uniform.h:163
static double LogNormal(double zeta, double sigma)
Definition: Uniform.h:358
static double Gamma(double a, double b)
Definition: Uniform.h:386

Generated for Nemo v2.3.56 by  doxygen 1.9.0 -- Nemo is hosted on  Download Nemo

Locations of visitors to this page
Catalogued on GSR