40 #include <sprng_cpp.h>
44 #include <gsl/gsl_rng.h>
45 #include <gsl/gsl_randist.h>
46 #include <gsl/gsl_blas.h>
47 #include <gsl/gsl_math.h>
48 #include <gsl/gsl_vector.h>
49 #include <gsl/gsl_matrix.h>
50 #include <gsl/gsl_permutation.h>
71 static void init_gsl(
const gsl_rng_type* T,
unsigned long seed)
73 r = gsl_rng_alloc (T);
83 static void init (
unsigned long seed) {
88 stream = SelectType(4);
100 init_gsl( gsl_rng_mt19937, seed );
112#if defined(HAS_SPRNG)
114#elif defined(HAS_GSL)
128 return stream->sprng();
129#elif defined(HAS_GSL)
130 return gsl_rng_uniform(r);
137 Seed1 = 40014 * (
Seed1 - w * 53668) - w * 12211;
143 Seed2 = 40692 * (
Seed2 - w * 52774) - w * 3791;
149 if (z < 1) z += 2147483562;
151 }
while (!((z * 4.656613e-10) < 1.0));
153 return (z * 4.656613e-10);
157 static inline unsigned int Uniform (
unsigned int max)
159 return (
unsigned int)(
Uniform() * max);
166 static int intrand = stream->isprng();
167#elif defined(HAS_GSL)
168 static unsigned long int intrand = gsl_rng_get(r);
170 static int intrand = (
int)(
Uniform()*(double)std::numeric_limits<int>::max());
173 static unsigned int num = 0;
179 intrand = stream->isprng();
180#elif defined(HAS_GSL)
181 intrand = gsl_rng_get(r);
183 intrand = (
int)(
Uniform()*(double)std::numeric_limits<int>::max());
187 return (intrand & (1 << num) );
193#if defined(HAS_GSL) && !defined(HAS_SPRNG)
194 return gsl_rng_get(r);
196 unsigned long rnd, limit = 0x10000000;
198 rnd = (
unsigned long)(
Uniform()*ULONG_MAX);
205 static inline double gammln (
double xx) {
206 double x,y,tmp,ser=1.000000000190015;
207 static double cof[6]={76.18009172947146,-86.50532032941677,
208 24.01409824083091,-1.231739572450155,
209 0.1208650973866179e-2,-0.5395239384953e-5};
213 tmp -= (x+0.5)*log(tmp);
214 for (j = 0; j < 6; ++j) ser += cof[j]/++y;
216 return -tmp+log(2.5066282746310005*ser/x);
222#if defined(HAS_GSL) && !defined(HAS_SPRNG)
223 return gsl_ran_poisson(r, mean);
225 static double sq,alxm,g,oldm=(-1.0);
247 g=mean*alxm-
gammln(mean+1.0);
255 t=0.9*(1.0+y*y)*exp(em*alxm-
gammln(em+1.0)-g);
264#if defined(HAS_GSL) && !defined(HAS_SPRNG)
266 return gsl_ran_gaussian_ratio_method (r, sigma);
289 double u, v, x, y, Q;
290 const double s = 0.449871;
291 const double t = -0.386595;
292 const double a = 0.19600;
293 const double b = 0.25472;
294 const double r1 = 0.27597;
295 const double r2 = 0.27846;
318 Q = x * x + y * (a * y - b * x);
325 while (Q >= r1 && (Q > r2 || v * v > -4 * u * u * log (u)));
327 return sigma * (v / u);
331 static inline void BivariateGaussian(
double sigma1,
double sigma2,
double rho,
double *out1,
double *out2) {
332#if defined(HAS_GSL) && !defined(HAS_SPRNG)
333 gsl_ran_bivariate_gaussian(r,sigma1,sigma2,rho,out1,out2);
336 double u, v, r2, scale;
348 while (r2 > 1.0 || r2 == 0);
350 scale = sqrt (-2.0 * log (r2) / r2);
352 *out1 = sigma1 * u * scale;
353 *out2 = sigma2 * (rho * u + sqrt(1 - rho*rho) * v) * scale;
358 static inline double LogNormal (
double zeta,
double sigma) {
359#if defined(HAS_GSL) && !defined(HAS_SPRNG)
360 return gsl_ran_lognormal(r,zeta,sigma);
363 double u, v, r2, normal, z;
375 while (r2 > 1.0 || r2 == 0);
377 normal = u * sqrt (-2.0 * log (r2) / r2);
379 z = exp (sigma * normal + zeta);
386 static inline double Gamma (
double a,
double b) {
387#if defined(HAS_GSL) && !defined(HAS_SPRNG)
388 return gsl_ran_gamma(r, a, b);
397 return Gamma(1.0 + a, b) * pow (u, 1.0 / a);
402 double d = a - 1.0 / 3.0;
403 double c = (1.0 / 3.0) / sqrt (d);
417 if (u < 1 - 0.0331 * x * x * x * x)
420 if (log (u) < 0.5 * x * x + d * (1 - v + log (v)))
432#if defined(HAS_GSL) && !defined(HAS_SPRNG)
433 return gsl_ran_bernoulli(r, p);
453 static inline void MultivariateGaussian(gsl_vector *eval, gsl_matrix *evec,
454 gsl_vector *workspace, gsl_vector *px)
458 for (i=0; i<eval->size; i++)
459 gsl_vector_set (workspace, i,
460 Gaussian(gsl_vector_get (eval, i)));
462 gsl_blas_dgemv (CblasNoTrans, 1.0,
463 evec, workspace, 0.0, px);
467 static inline void MultivariateGaussianCholesky(gsl_vector *sigma, gsl_matrix *M, gsl_vector *px)
469 for (
size_t i = 0; i < sigma->size; i++)
470 gsl_vector_set (px, i,
Gaussian(gsl_vector_get(sigma, i)));
472 gsl_blas_dtrmv (CblasLower, CblasNoTrans, CblasNonUnit, M, px);
475 static inline long double factoriel(
unsigned int x) {
477 for(
unsigned int i=1;i<=x;++i)
490 static inline double Binomial(
double p,
unsigned int n)
493 unsigned int i, a, b, k = 0;
512 p = (p - X) / (1 - X);
516 for (i = 0; i < n; i++)
527 static inline double Beta (
const double a,
const double b)
533 return x1 / (x1 + x2);
536 static inline unsigned int Binomial2 (
double p,
unsigned int n){
538#if defined(HAS_GSL) && !defined(HAS_SPRNG)
539 return gsl_ran_binomial (r, p, n);
545 static inline void Multinomial (
size_t K,
unsigned int N,
const double p[],
unsigned int n[])
547#if defined(HAS_GSL) && !defined(HAS_SPRNG)
548 return gsl_ran_multinomial (r, K, N, p, n);
555 unsigned int sum_n = 0;
562 for (k = 0; k < K; k++)
567 for (k = 0; k < K; k++)
571 n[k] =
Binomial (p[k] / (norm - sum_p), N - sum_n);
592 unsigned int sum_n = 0;
594 for (k = 0; k < K; k++)
604 const std::valarray<double> &p,
610 unsigned int _n, sum_n = 0;
611 unsigned int i = 0, pos = 0;
613 for (k = 0; k < K; k++) {
617 for(i = 0; i < _n; i++)
629 const std::valarray<double> &p,
635 unsigned int _n, sum_n = 0;
636 unsigned int i = 0, pos = 0;
638 for (k = 0; k < K; k++) {
642 for(i = 0; i < _n; i++)
658 const std::valarray<double> &p,
666 for (k = 0; k < N; k++) {
673 while( sum < rand ) {
692 unsigned int size = length, pos, last = length - 1, num = length -1, el;
696 for (
unsigned int i = 0; i < num; i++) {
699 array[last] = array[pos];
714 static inline void Sample (
const int from,
const int to,
const unsigned int num,
int* result,
bool replace)
718 unsigned int seq_length = to - from;
720 assert(num <= seq_length);
723 int *seq =
new int [seq_length];
727 for(
unsigned int i = 1; seq[i-1] < to && i < seq_length; ++i)
728 seq[i] = seq[i-1] + 1;
732 unsigned int size = seq_length, pos, last = seq_length - 1;
734 for (
unsigned int i = 0; i < num; i++) {
736 result[i] = seq[pos];
737 seq[pos] = seq[last];
743 for (
unsigned int i = 0; i < num; i++)
750 static inline void SampleSeq(
int from,
int to,
int by,
unsigned int num,
int* result,
bool replace =
false)
752 assert(from < to && by < to && by > 0);
754 unsigned int seq_length = (
int)((to - from) / by);
756 assert(num <= seq_length);
758 int *seq =
new int [seq_length];
762 for(
unsigned int i = 1; seq[i-1] + by < to && i < seq_length; ++i) seq[i] = seq[i-1] + by;
766 unsigned int size = seq_length, pos, last = seq_length - 1;
768 for (
unsigned int i = 0; i < num; i++) {
770 result[i] = seq[pos];
771 seq[pos] = seq[last];
777 for (
unsigned int i = 0; i < num; i++) result[i] = seq[
RAND::Uniform(seq_length) ];
783 static inline void SampleSeqWithReciprocal(
int from,
int to,
int by,
unsigned int num1,
int* result1,
unsigned int num2,
int* result2)
785 assert(from < to && by < to && by > 0);
787 unsigned int seq_length = (
int)((to - from) / by);
789 assert(num1 + num2 == seq_length);
791 int *seq =
new int [seq_length];
795 for(
unsigned int i = 1; seq[i-1] + by < to && i < seq_length; ++i) seq[i] = seq[i-1] + by;
797 unsigned int size = seq_length, pos, last = seq_length - 1;
799 for (
unsigned int i = 0; i < num1; i++) {
801 result1[i] = seq[pos];
802 seq[pos] = seq[last];
803 seq[last] = result1[i];
807 for (
unsigned int i = 0; i < num2 && i < size; i++)
MPI environment setup.
Definition: MPImanager.h:121
unsigned int workerCount() const
Definition: MPImanager.h:128
unsigned int workerRank() const
Definition: MPImanager.h:129
Random number generation class, uses various types of random generators depending on the implementati...
Definition: Uniform.h:56
static double Exponential(double mu)
Definition: Uniform.h:448
static double Bernoulli(double p)
Definition: Uniform.h:430
static void SampleSeqWithReciprocal(int from, int to, int by, unsigned int num1, int *result1, unsigned int num2, int *result2)
Definition: Uniform.h:783
static double gammln(double xx)
From the Numerical Recieps.
Definition: Uniform.h:205
static void MultinomialOnNormalizedValarray(size_t K, unsigned int N, const std::valarray< double > &p, unsigned int n[])
Multinomial draw assuming the probabilities sum to 1.0 and are all > 0.
Definition: Uniform.h:585
static void Multinomial(size_t K, unsigned int N, const double p[], unsigned int n[])
Definition: Uniform.h:545
static void BivariateGaussian(double sigma1, double sigma2, double rho, double *out1, double *out2)
Definition: Uniform.h:331
static void MultinomialOnNormalizedValarrayZipper_scrambleOut(size_t K, unsigned int N, const std::valarray< double > &p, unsigned int n[])
Multinomial draw assuming the probabilities sum to 1.0 and are all > 0, the output is an array of siz...
Definition: Uniform.h:657
static void MultinomialOnNormalizedValarray_expandedOut(size_t K, unsigned int N, const std::valarray< double > &p, unsigned int n[])
Multinomial draw assuming the probabilities sum to 1.0 and are all > 0, the output is an array of siz...
Definition: Uniform.h:603
static double Binomial(double p, unsigned int n)
Definition: Uniform.h:490
static void free()
Memory de-allocation.
Definition: Uniform.h:109
static long Seed1
Definition: Uniform.h:79
static void ScrambleArrayUInt(const int length, unsigned int *array)
Randomize the elements within an array.
Definition: Uniform.h:690
static double Poisson(double mean)
From the Numerical Recieps.
Definition: Uniform.h:220
static unsigned int Binomial2(double p, unsigned int n)
Definition: Uniform.h:536
static unsigned long RandULong()
Return a random unsigned long, from uniform distribution.
Definition: Uniform.h:192
static void MultinomialOnNormalizedValarray_scrambleOut(size_t K, unsigned int N, const std::valarray< double > &p, unsigned int n[])
Multinomial draw assuming the probabilities sum to 1.0 and are all > 0, the output is an array of siz...
Definition: Uniform.h:628
static unsigned int Uniform(unsigned int max)
Returns a uniformly distributed random number from [0.0, max[.
Definition: Uniform.h:157
static void init(unsigned long seed)
Initialize the random generator's seed.
Definition: Uniform.h:83
static long Seed2
Definition: Uniform.h:79
static void Sample(const int from, const int to, const unsigned int num, int *result, bool replace)
Creates a sample of integers within range [from, to), with or without replacement.
Definition: Uniform.h:714
static double Beta(const double a, const double b)
Definition: Uniform.h:527
static double Gaussian(double sigma)
Definition: Uniform.h:262
static double Uniform()
Generates a random number from [0.0, 1.0[ uniformly distributed.
Definition: Uniform.h:125
static void SampleSeq(int from, int to, int by, unsigned int num, int *result, bool replace=false)
Definition: Uniform.h:750
static bool RandBool()
Returns a random boolean.
Definition: Uniform.h:163
static double LogNormal(double zeta, double sigma)
Definition: Uniform.h:358
static double Gamma(double a, double b)
Definition: Uniform.h:386